Estas en:

Continuos Optimization Based on a Hybridization of Differential Evolution with K-means

TítuloContinuos Optimization Based on a Hybridization of Differential Evolution with K-means
Tipo de PublicaciónConference Proceedings
Year of Conference2014
AutoresSierra Martínez, L. M., Corrales J. C., & Cobos Lozada C. A.
Conference Name14th Ibero-American Conference on AI -IBERAMIA 2014
Series TitleAdvances in Artificial Intelligence Lecture Notes in Computer Science
Año de publicaciónNoviembre 2014
Año de publicaciónSpringer
Conference LocationSantiago de Chile

This paper presents a hybrid algorithm between Differential Evolution (DE) and K-means for continuous optimization. This algorithm includes the same operators of the original version of DE but works over groups previously created by the k-means algorithm, which helps to obtain more diversity in the population and skip local optimum values. Results over a large set of test functions were compared with results of the original version of Differential Evolution (DE/rand/1/bin strategy) and the Particle Swarm Optimization algorithm. The results shows that the average performance of the proposed algorithm is better than the other algorithms in terms of the minimum fitness function value reached and the average number of fitness function evaluations required to reach the optimal value. These results are supported by Friedman and Wilcoxon signed test, with a 95% significance.


El departamento de Telemática pertenece a:

Universidad del Cauca | Calle 5 No. 4-70 | Telefax (+57 2)823 2955 |
Popayán - Colombia